
 Page 1/8

Applying Holistic Distributed Scheduling to AUTOSAR
Methodology

Ahmed DAGHSEN, Khaled CHAABAN, Sébastien SAUDRAIS, Patrick LESERF

ESTACA, Rue Georges Charpak BP 76121 53061 Laval Cedex 9

Abstract: AUTOSAR initiative continues to envoy
success in the automotive software domain by
providing a common framework for efficient software
development and by the integration and reuse of
software components. However, additional work is
needed to consider non-functional properties in the
development cycle. Recent release of AUTOSAR
has defined a common language to define timing-
related information for the automotive embedded
system across all development layers.

In this paper, we propose an approach to consider
the AUTOSAR timing model. Then we aim to
transform it to a classical scheduling model in order
to apply directly fundamentals scheduling theories
for timing analysis. The approach is applied on a
realistic case study, a steer-by-wire system.

Keywords: real-time scheduling, AUTOSAR, timing
analysis.

1. Introduction

Nowadays, the number of software and processor
embedded in vehicles is growing fast. The diversity
of components providers also increase the
complexity of their integration and do not ease the
reuse of these components because of their
heterogeneity. To answer this problem, AUTOSAR
(AUTomotive Open System ARchitecture) has been
introduced by automobile manufacturers, suppliers
and tool developers as the future standard of
automotive Electricals/Electronics (E/E) engineering.
By breaking up the cohesion between hardware
infrastructure and the application software,
embedded automotive system complexity can be
managed and software reuse is promoted [4].
AUTOSAR development methodology is based on a
model-driven development style. The software
architecture, as well as the Electronic Control Unit
(ECU) hardware and the network topology, are
modelled in a formal way defined in a metamodel
supporting the software development process from
architecture up to integration. All available modelling
elements are specified by the “AUTOSAR
metamodel” [4].
Moreover, many AUTOSAR applications are
considered as time-critical or at least time-
dependent. Thus, precise timing and prioritisation of

functions are essential for both safety and comfort of
in-vehicle applications and also for the continuous
deployment of the standard within the automotive
industry. Many improvements and extensions to the
current AUTOSAR system model have been
developed recently to handle all timing-related
information during the development process [4].
Thus, complexity and development cost cycle are
reduced significantly while reliability is improved.
Furthermore, AUTOSAR allows an easy integration
of timing information using existing system’s
software model and hardware topology following a
model-driven approach. However, there are few
works that use these timing properties and
constraints to make a global timing analysis of the
system. Timing analysis means verifying if the given
timing properties fulfil the given timing constraints.
We can distinguish between local and global timing
analysis. Where local timing analysis addresses
tasks scheduling regarding a processor or an ECU,
global scheduling considers the global distributed
system where communication bus and gateways
must be analysed together with ECUs tasks.

Figure 1 : using AUTOSAR timing model to apply
scheduling analysis.

In this paper we propose a holistic scheduling
analysis of the distributed system. The proposed
approach is illustrated in two main steps in the
Figure 1: first applying a model transformation to
convert AUTOSAR timing model to a scheduling
model, then applying scheduling techniques for
timing analysis of the whole AUTOSAR system. We
apply the method to a case study, a steer-by-wire
application, and simulate it using TrueTime Matlab
toolbox [6].

 Page 2/8

The remaining of the paper is organized as followed.
Section 2 presents an overview of AUTOSAR
methodology and scheduling analysis. Section 3
presents the system model and explains the
application of the scheduling approach to
AUTOSAR. Section 4 shows the steer-by-wire case
study. Section 5 concludes and presents future
works.

2. AUTOSAR

We present by this section a short description of
AUTOSAR methodology and then some related
works concerning real-time scheduling in AUTOSAR.

2.1 Methodology

According to AUTOSAR approach, the development
process of an E/E system has the general structure
shown in Figure 2.

Figure 2 : AUTOSAR Methodology

Step 1: the first step in AUTOSAR development
process is to define the set of software components
(SWCs) constituting the user software applications.
SWCs communicate using ports through their
interfaces. According to release 4.0 of AUTOSAR,
an interface may be of sender/receiver, client/server
or calibration type. Further, a SWC may be one of
the three types: sensor/actuator, application or
calibration type.

Now that the SWCs types and external interfaces
are defined, we must describe the internal behaviour
of each SWC. The internal behaviour decomposes a

SWC into runnable entities which represents the C
code that will be executed at runtime.
A runnable is triggered using an event. An event
may be of timing or data type. Timing event
runnables are triggered periodically when data event
runnables are triggered at the arrival pattern of data
from connected sensors or other components of the
system (inter ECUs). Runnables exchange data via
specific AUTOSAR variables called inter-runnables
variables instead of global variable that is prohibited
in AUTOSAR specifications.
Step 2: at the Virtual Functional Bus (VFB) level,
SWCs are defined without consideration of the
underlying hardware on which these SWCs will run
on later. So, two software components might run on
the same ECU or on different ECUs and this is
completely transparent to software developers. The
communication between the components is then
either an intra-ECU communication or an inter-ECU
communication and is routed via the VFB bus which
allows a virtual integration of the system
independently of underlying software and hardware.

Steps 3, 4, 5: now that the SWCs and their internal
behaviours are defined at the high level, we must
proceed by the mapping of SWCs to available ECUs.
This phase requires some information about system
and ECU constraints. For example, an application
SWC may be mapped on any ECU. In contrast
sensor and actuator SWCs are bound to a particular
ECU where the sensor or the actuator is connected
to. At this stage, we may have also some
engineering constraints (e.g. ECU load, SWCs
resources consumption, ECU hardware
requirements, etc.) that may influence the mapping
operation.

Step 6: after the mapping of SWCs to ECUs, we can
proceed by the development and integration of each
ECU. The software architecture of an ECU is
composed of three main layers: (1) the SWCs layer,
(2) the Run Time Environment (RTE) layer and then
(3) the Basic Software (BSW) layer.

The SWCs contain the application’s functional code.
RTE represents an instance of the VFB bus per
ECU. It is the “glue code” between the application
SWCs and the BSW layer. It provides standardized
interfaces to communicate with the BSW layer and to
communicate between SWCs themselves. Data
exchange between SWCs themselves and between
SWCs and the underlying BSW layer is performed
exclusively via RTE. Thus, depending on SWCs
locations, the RTE allows data exchange either
directly via a shared memory or by sending
messages via a network bus.

BSW layer makes the link between RTE layer and all
hardware features of the microcontroller (µC). BSW
is composed of 80 modules abstracted by 3 layers:
the service layer, the ECU abstraction layer and the
µC abstraction layer. The service layer provides µC

 Page 3/8

and ECU independent services like Operating
System (OS) and communication services.

2.2 Scheduling analysis

There are few works dealing with the exploitation of
the AUTOSAR timing extensions for timing analysis.
In the scope of TIMMO project, [3] [4] give a general
framework for the relation between AUTOSAR
concepts and timing constraints. They have
proposed also an extension of AUTOSAR standard
towards the possibility to specify the system’s timing
constraints. Thus, a scheduling analysis of an
AUTOSAR application can be performed at the low-
level. But the resulting task timing reveals hardly any
direct and intuitive timing-relation with high-level
software components to which timing information
shall finally be attached. Another mismatch at the
communication bus level is the lack of rules
describing the AUTOSAR tasks due to the absence
of clear rules describing the activation of the tasks
within the software components. At the bus
communication level, the frame generation modes
and the buffering strategy complicate the timing
behavior of the transmitted frames and
implementation dependency.

Many real-time scheduling theories have been
developed recently in the field of embedded
systems. In this paper, we present a method of
applying scheduling works of J. Sun et al. [2] to
AUTOSAR methodology. The proposed method
deals with an end-to-end approach to schedule tasks
that share resources in a distributed system. The
method considers only static scheduling analysis of
tasks with fixed priorities and deadlines.

A task in a distributed real-time system is called an
end-to-end task if it consists of a chain of subtasks
and has an end-to-end deadline. Each subtask is
assigned a proper priority and its worst-case
response time can be bounded. From the end-to-end
scheduling point of view, a task that needs remote
resources is viewed as a chain of subtasks in the
following way. Each critical section associated with a
remote resource is a subtask executed on the
synchronization processor of the remote resource. A
segment that requires no resources is also
considered as a subtask and this subtask is
executed on the local processor. The schedulability
analysis of this approach is of four steps: first step is
the mapping of a given task set to an end-to-end
task. Second step is the assignment of priorities to
subtasks composing the end-to-end task. Several
methods can be used to assign priorities like the
global-deadline-monotonic and effective-deadline-
monotonic assignment. Third step is to determine
the worst case response time for each subtask. The
worst case of a subtask is thus determined by
applying a specified equation and using tasks model.
From the results obtained in the previous steps, the
worst case response time for a parent task or end-to-

end task is obtained by adding the response times of
its subtasks. Thus if the sum obtained was less than
the relative deadline of this task in all the parent
tasks, then the system is schedulable using this
algorithm. Let’s note that it is sufficient to have only
one task of the parent tasks which doesn’t fulfill the
condition of schedulability to conclude that the whole
system will not be schedulable.

3. Applying scheduling approach to AUTOSAR

We present in this section the system model
assumptions and then we show how to apply it to
AUTOSAR.

3.1 System model

In this part, we describe the end-to-end system
model used as the basis of the work. As defined
before, a task in a distributed real-time system is
called an end-to-end task if it consists of a chain of
subtasks and has an end-to-end deadline. We call a
real-time system an end-to-end system if it consists
of more than one processor and a set of end-to-end
tasks [2]. The system model is defined as follows:

- The system consists of a set {Pi} of processors
and a set {Ti} of tasks.

- Each task Ti consists of a chain of ni subtasks;
Ti,1, Ti,2 , …,Ti,n. Ti is referred as the parent task
to its subtasks and subtasks are referred to as
sibling subtasks to each other if they have the
same parent task.

- Each request for execution of a subtask is called
an instance of that subtask and the
corresponding instances of all subtasks are
collectively called an instance of their parent
task.

- Subtask Ti,j is a predecessor (successor) of
subtask Ti,k if j < k (j > k), and Ti,j is the
immediate predecessor (successor) of Ti,k if they
are also adjacent (| j-k | = 1).

- Each task Ti is a periodic task with a period pi.
For simplicity, we will consider that all subtasks
of Ti are of the same period.

- The release time of the first instance of Ti,1 is the
phase fi of task Ti .

- An instance of Ti,j cannot start to execute before
the complete execution of Ti,j-1 .

- Each task Ti has a relative end-to-end deadline
Di.

- Each subtask Ti,j has a maximum execution time
Yi,j and a fixed priority Oi,j .

- Subtasks are statically assigned to processors.
The system model imposes strong restrictions on
tasks properties. So the following assumptions are
considered in our system model.
We consider both preemptive and non-preemptive
tasks and subtasks. We also assume the
establishment of a common time base for all
processors in the network. We neglect the jitter of

 Page 4/8

periodic tasks and we also consider that the system
subtasks and message subtasks are synchronized.
3.2 The algorithm

The PTTDF (Per Task Time Demand Function)
algorithm allows computing the tighter upper bounds
on the response times of the end-to-end tasks in
static systems. The structure of the PTTDF algorithm
is defined as follows:

For each subtask Ti,j, Hi,j denotes the set of subtasks
that are on the same processor as Ti,j, are of
different parent tasks and have priorities higher than
or equal to Ti,j. Let Ni,j denote the set of tasks that
have subtasks in Hi,j.

The PTTD function Mk
i,j

(t) is an upper bound of

Mk
i,j

(t0, t) for any time instant t0. This upper bound is:

Mk
i,j

=
t

pk
 tk,lTk ,lϵHi ,j

 [1]

The first equation, Eq.[1], gives a loose bound of

Mk
i,j

(t0, t) with k the index of parent tasks of Hi,j

subtasks.

Let SHi,j denote the set of subtasks each of which is

a sibling subtask of Ti,j, executes on the same
processor as Ti,j, and has priority higher than or
equal to Ti,j. Δi,j is equal to the sum of the execution
times of the subtasks in SHi,j :

Δi,j = ti,kTi ,k ϵSH i ,j
 [2]

The time demand function is given by this
equation:

Wi,j t = ti,j + Δi,j + ti,kTk ϵN i ,j
 [3]

The upper bound Ci,j of the response time of Tij is the
first time instant when the time demand W’i,j is met
by time supply t:

Ci,j t = min t > 0 t = Wi,j(t)} [4]

Ci,j is calculated using an efficient iterative method
as follows:

Sk = 𝑊𝑖,𝑗 (Sk−1) [5]

With S0 = Wi,j(0) and Ci,j should be ≤ pij .

Sometimes this iterative method does not converge
after a finite number of iterations then we put Ci,j to ∞
and by consequence the system is not schedulable.

3.3 Incorporating algorithm to AUTOSAR

As mentioned before, the approach presented in this
paper is to perform a transformation of AUTOSAR
timing properties and constraints into a complete
scheduling model. By using this model, we can apply
directly existing scheduling theories to the
AUTOSAR application.
Let’s recall that an AUTOSAR system consists of
software components (SWCs) communicating with
one another and interacting on a Virtual Functional
Bus (VFB). SWCs are then mapped to specific
control units (ECU) distributed over a network.
Recall also that an end-to-end task is composed of
multiple subtasks running on multiple processors.
This task is the chain of subtasks which are subject
to precedence constraints. We suppose that a task is
subject to an end-to-end deadline and we don’t care
about the response time of a particular subtask.
In AUTOSAR context, an end-to-end AUTOSAR task
corresponds to the activity from the reception of the
data on the R-Port (required port) of a sensor SWC
to the P-Port (provider port) of the actuator SWC.
This end-to-end-task can be executed on different
SWCs that belong to the same ECU or on different
ECUs using communication bus.
Moreover, we consider in our model that each
sensor or actuator SWC contains only one runnable;
while an application SWC may contain several
runnables. Each runnable in our model corresponds
to a subtask of the end-to-end AUTOSAR task.
Furthermore, the runnables inside an application
SWC have precedence constraints. Each ECU
represents one processor and the communication
bus represents a link processor. Each subtask
executing on the bus is a message transmitted by a
given ECU to another one. The transmission of each
message is modeled as a “message” non-
preemptive subtask on the link processor (e.g.
FlexRay). The maximum execution time of a
“message” subtask is equal to the maximum time
needed to deliver the message when it is alone on
the bus. Thus the execution time of each subtask on
the bus is known.
The model considers also the delays introduced by
the communication between high-level SWCs and
the underlying BSWs and RTE by modeling them as
subtasks. The time delay taken from the start to the
end of a runnable execution is also supported by the
model.
Now that the scheduling model of the AUTOSAR
application has been constructed from the system
timing information, we can apply directly the
scheduling algorithm of J. Sun et al in order to verify

1. Require : maintain a task set {Ti }

with period pi and execution time ti

Maintain a subtask set {Ti,j }

associated with the task {Ti }. Each

subtask {Ti,j } has the execution

time ti,j, the priority oi,j and the

processor Ti,j executes on.

2. For each subtask Ti,j :

a. Compute Hi,j and Ni,j ;
b. For every task in Hij compute

the PTTD function Mk
i,j

(t);
c. Compute SHi,j and Δi,j;
d. Compute Wi,j(t);
e. Compute Ci,j using the iteration

method.

For each task Ti, calculate C = Ci,j

ni

j=1

 Page 5/8

the system schedulability and to compute worst end-
to-end delays.

AUTOSAR model System model
Timing chain End-to-end task

Subchain Subtask

ECU Processor

Communication bus Link processor

Latency Release time

Runnable Subtask

Table 1: relationship between scheduling system
model and AUTOSAR 4.0 concepts

Table 1 illustrates some relationship between
scheduling system model and the AUTOSAR
release 4.0 one.

4. Case study

In this section, we show how to apply the scheduling
algorithm previously presented on a steer-by-wire
system developed using the AUTOSAR
methodology.

4.1 System description

As depicted in Figure 3, a basic steer by wire system
is composed of three main blocks: the hand wheel
(i.e. steering), controllers and the road wheels.

Figure 3: basic architecture of a steer-by-wire
system

When the driver operates the hand wheel to turn the
vehicle, a steering angle signal will be sent to the
controller. Two kinds of sensors are necessary to
acquire the steer angle and the torque applied by the
driver. The controllers will process all acquiring
signals and also perform some control functions
associated with the vehicle’s steering function and
output an actuator angle for the road wheels that in
turn will turn the wheels through an actuator. The
feedback signals (actuator feedback and wheel
feedback) involve some kind of force or torque
sensors and are necessary so that the driver get the
feeling of turning a traditional steering wheel and feel
the effect of turning the wheels on a certain type of
road.

The Steer-By-Wire system may be composed of two
main functions: (1) the feedback torque function and
(2) the rack torque function (Figure 4).
The feedback torque function is essential for the
system operation. It computes the feedback force

applied to the steering wheel so that the driver feels
the effect of tuning the wheels on a certain type of
road.

Figure 4: two main functions of the steering system

The rack torque function is the main system function
that permits to control the front axle actuator.
The distributed steer-by-wire architecture involves
several components: ECU’s, communication lines
(e.g., FlexRay bus) and appropriate sensors and
actuators.
Figure 5 illustrates the implementation of the rack
torque function according to AUTOSAR approach. At
the VFB level, the signal path involves four
components. The “Steer Sensor” component
acquires the sensor physical data and passes it to
the application software component “Steer Manager”
for treatment. Afterwards the signal is sent to the
application software component “Wheel Manager”
for order computation until it is finally send to the
actuator via the “Wheel Actuator” component.
At the system level, we map SWCs to available
ECUs and then we configure RTE and BSW
modules. In our case study we have only two ECUs,
steer ECU and wheel ECU.

Figure 5: implemntation of the rack torque function in
AUTOSAR

4.1 Applying scheduling algorithm

In order to apply the scheduling algorithm to our
case study, each function is represented as an end-
to-end task. So, we have only two end-to-end tasks.
Note that in AUTOSAR, and end-to-end task passes
by 3 stages: from hardware to software represented
by the transformation of data from the physical
sensor to the sensor SWC (e.g. steer sensor or
wheel sensor SWC), the second stage is all the
actions that pass between the sensor SWC till the

C
o

n
tro

lle
rs

H
a

n
d
 w

h
e

e
l

R
o

a
d
 w

h
e

e
ls

Steering angle

and torque

Feedback

torque

Wheel angle

and torque

Rack torque

C
o

n
tro

lle
rs

H
a

n
d
 w

h
e

e
l

R
o

a
d
 w

h
e

e
ls

Steering angle

and torque

Feedback

torque

Wheel angle

and torque

Rack torque

Feedback Torque

function

Vehicle Speed

Wheel Torque

Steer Torque

Feedback Torque

Rack Torque

function

Wheel Torque

Steer Torque

Rack Torque

 Page 6/8

software control represented by the actuator SWC.
The last stage is the interface that is done between
the actuator SWC and the physical actuator (as
shown in Erreur ! Source du renvoi introuvable.).
Let’s note T1 as the rack torque end-to-end task and
T2 as the feedback torque end-to-end task:

T1: has 17 subtasks: T1,1, T1,2, T1,3, T1,4 …T1,17.
T2: has 17 subtasks: T2,1, T2,2, T2,3, T2,4 … T2,27.
Each end-to-end timing chain segment in AUTOSAR
model corresponds to a subtask.

Figure 6: End-to-end timing representation of AUTOSAR methodology

Subtasks of each function are executed on a specific
ECU. As noted above, we have two processors (P1
at the steer side and P2 at the wheel side) and the
communication bus represents a link processor P3.
The table below summarizes the two tasks T1 and T2
with their subtasks properties. Priorities are fixed
with respect of precedence constraint.

T1 T2

Ti,j Proc Oi,j pi,j ti,j Ti,j Proc Oi,j pi,j ti,j

T1,1

T1,2

T1,3

T1,4

T1,5

T1,6

T1,7

T1,8

T1,9

T1,10

T1,11

T1,12

T1,13

T1,14

T1,15

T1,16

T1,17

P1

P1

P1

P1

P1

P1

P1

P1

P2

P3

P3

P3

P3

P3

P3

P3

P3

1
2
3
4
5
6
7
8
8
8
9
10
11
12
13
14
15

50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50

1
1
1
4
2
4
1
1
8
1
1
4
2
4
1
1
1

T2,1

T2,2

T2,3

T2,4

T2,5

T2,6

T2,7

T2,8

T2,9

T2,10

T2,11

T2,12

T2,13

T2,14

T2,15

T2,16

T2,17

P3

P3

P3

P3

P3

P3

P3

P3

P2

P1

P1

P1

P1

P1

P1

P1

P1

20
21
22
23
24
25
26
27
27
27
28
29
30
31
32
33
34

50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50

1
1
1
4
2
4
1
1
8
1
1
4
2
4
1
1
1

Applying the algorithm:
Here we show just some results for each step of the
algorithm:

a) For each subtask Ti,j we compute Hi,j and Ni,j:
For example we have:

H1,1= { }; (idem for all subtasks of T1)

H2,1 = {T1,10, T1,11, T1,12, T1,13, T1,14, T1,15, T1,16,
T1,17};

And N1,1= { }; (idem for all subtasks of T1)

N2,1 = {T1}; (idem for all subtasks of T2)
b) For every task in Hi,j we compute the Per-

Task Time Demand (PTTD) function Mk
i,j

(t) :

For example:
M1,1 t = 0; (idem for all subtasks of T1)

M1
2,1(t) =

 t

50
+

 t

50
+

4 t

50
+

 2t

50
+

4 t

50
+

 t

50
+

 t

50

+
 t

50
=

15 t

50
;

c) For each subtask Tij we compute SHi,j and
Δi,j. As an example, for task T1 we have:

SH1,1= { }; SH1,7= {T1,10, T1,11, T1,12, T1,13, T1,14,
T1,15, T1,16};

Δ1,1=0; Δ1,17=14
And for task T2 we have:

SH2,1= { }; SH2,7= {T2,10, T2,11, T2,12, T2,13, T2,14,
T2,15, T2,16};

Δ2,1=0; Δ2,7=14
d) For each subtask Ti,j we compute W’i,j (t)

given by Eq.[3]:
For example, for task T1 we have:
W1,1 t = 1 ; W1,17 t = 15 ;
And for task T2 we have:

W2,1 t = 1 +
15t

50
 ; W2,17 t = 15 +

15t

50
 ;

e) We compute Ci,j using the iterative method
based on Eq.[5]:
Computing C11:

S0 = W1,1 (0) = 1; S1 = W1,1 (S0) = 1;
S2 = W1,1 (S1) = 1;

 Page 7/8

C1,1 is the sum of the terms of a geometric
progression. In this case the progression is a
constant sequence. Then C1,1 = 1.
Similarly we obtain C1,2=2,…,C1,17=15
Computing C2,1:

S0 = W2,1 (0) = 1;

S1 = W2,2 (1) = 1+
15

50
; S2 =W2,3 (1+

15

50
)= 1+

15

50
 (1 +

15

50
) = 1+

15

50
+

15

50
∗

15

50
 ;

C2,1 is the sum of the terms of a geometric

progression with first term 1 and common ratio
15

50
.

Then C2,1 =
1

1−
15

50

= 1.42.

Hence C1 = 1+2+…+15 = 133 > 50 then T1 is not
schedulable.
And C2 = 1.42 + 2.84 +…21.3= 196.6 >> 50 then T2

is not schedulable. Finally, the system is not
schedulable.

The obtained bounds are very pessimist since the
used algorithm does not take into account the
precedence constraints of subtasks when computing

PTTD function Mk
i,j

(t) which is the sum of all

subtasks’ execution time in Hi,j.

According to [2], an improvement of computing the
PTTD function is possible in order to obtain tighter

bounds of Mk
i,j

(t) and thus tighter bounds Ci of the

response time of Ti.

The PTTD function Mk
i,j

(t) computed by Eq.[1]

assumes that the subtasks of each task in Ni,j are
independent, but the actual time demand may be
less than the sum in the right hand side of Eq.[1]
because of the precedence constraints among
subtasks. Then the PTTD function can be

considered as the maximum of {Mk,l
i,j

(t)} for all Tk,l in

Hi,j.

Applying this modification, we obtain a new value of
the upper bound C2 =155.32, which is tighter than
the first one. Despite this improvement, the upper
bound Ci,j still very pessimistic. Another improvement
axe may be the calculation of an end-to-end
response time of each subtask and then to consider
the response time of the last subtask of an end-to-
end task.

4.2 Test by simulation

Using TrueTime tool [6] we simulate the architecture
of the steer-by-wire system. The objective of the
simulation is to verify the adequacy between the
scheduling results and the simulation one.

TrueTime is a Matlab toolbox that permits to
simulate controllers interconnected by a network. It
contains two main blocks: kernel block and network
block.

Kernel block allows the simulation of a complete
controller with full OS (Operating System) primitives,

e.g. preemptive/non-preemptive tasks, overheads,
execution time, priority-driven scheduling, etc. It
allows also the interaction with the external
environment using I/O ports.

Network block simulates the network of the system.
It supports several communication protocols (CAN,
Ethernet, TDMA, etc.).

TrueTime permits to take into account the clocks
drifts between networked-computers. But in our
simulation, we consider a global time base for all
networked nodes.

Figure 7: true time model of the steer by wire system

As shown in Figure 7, the steer-by-wire system is
composed of two kernel blocks: wheel ECU and
steer ECU and one network block (for the link
processor).
For kernel blocks, we consider a preemptive OS with
priority-driven scheduling. For the network block we
use a TDMA protocol which is suited for such critical
application.

Figure 8: sequence of segments code

In TrueTime simulator, the execution code of a task
may be divided on several segments code (Figure
8). We use this feature in order to implement each
subtask of our system model on a segment code.
Subtasks of the same task have the same period
and priorities are assigned respecting precedence
constraint.
Using periodic tasks, we are able to simulate the
system at all levels, e.g. BSW, RTE, SWC, etc.
Sensor and actuator are also simulated using
dedicated periodic tasks. We neglect the overhead
of the OS scheduler and we consider that the
execution time of each subtask is given a priori as
well as its deadline and phase.

 Page 8/8

Now that the set of tasks is defined, we can perform
a simulation of the system. The expected results of
the simulation correspond to a Rate Monotonic
Analysis (RMA) analysis of the system. Thus, we
have obtained 38 ms of end-to-end delay for tasks
T1 and T2.

5. Conclusion

The support of timing requirements in AUTOSAR
has received a wide attention recently. The main
goal is to perform an early verification and analysis
of the system performance at the design level and
before implementation. We have proposed in this
paper an approach to transform an AUTOSAR timing
model to a scheduling model. By this transformation,
we can apply directly the scheduling techniques from
the real-time system community to the AUTOSAR
system. In this paper, we have applied an end-to-
end scheduling algorithm proposed by J. SUN in
order to bound end-to-end latencies. We have
shown how to apply it on a steer-by-wire system.
However, the proposed algorithm computes loose
bounds of end-to-end latencies and it makes several
simplifications on the system model. A more
accurate system model must be considered in order
to reflect a realistic AUTOSAR system. Moreover,
more accurate and optimized real-time scheduling
techniques may be adapted to our approach such as
[7] or [8].

6. References

[1] K. Chaaban, P. Leserf, S. Saudrais: “Steer-By-Wire
System Development Using AUTOSAR
Methodology”, ETFA, SPAIN, 2009.

[2] J. Sun, J. Liu, R. Bettat: “An End-To-End Approach
to Schedule Tasks with Shared Resources in
Multiprocessor Systems”, Department of Computer
Science- University of Illinois.

[3] O. Scheickl, M. Rudorfer: “Automotive Real Time
Development Using a Timing-augmented
AUTOSAR Specification”. BMW Car IT, Munich.

[4] K. Richter, R. Racu, R. Ernst: “The Need of a
Timing Model for the AUTOSAR software
standard”, Braunschweig, Germany.

[5] S. Fürst et al.: “AUTOSAR – A Worldwide Standard
is on the Road”, 14th International VDI Congress
Electronic Systems for Vehicles 2009, Baden-
Baden.

[6] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, K.
Årzén: "How Does Control Timing Affect
Performance? Analysis and Simulation of Timing
Using Jitterbug and TrueTime". IEEE Control
Systems Magazine, 23:3, pp. 16--30, June 2003.

[7] K. Tindell: “Adding time-offsets to schedulability
analysis”. Technical Report YCS 221, Department
of Computer Science, University of York, UK, 1994.

[8] J. C. Palencia and M. G. Harbour: “Exploiting
precedence relations in the schedulability analysis
of distributed real-time systems”. In Proceedings of

the IEEE Real-Time Systems Symposium, pages
328–399. IEEE Computer Society, 1999.

